

    
      
          
            
  
url-matcher documentation

URL matching library that relates URLs with resources. Rules are defined using
simple pattern definitions. It is simpler and faster than using regular expressions
if the rules involves many domains.

License is BSD 3-clause.


Getting started


	Introduction






Documentation


	API Reference

	Contributing

	Changelog

	License








            

          

      

      

    

  

    
      
          
            
  
Introduction

Let’s start with an example. Imagine that you have several proxy servers and
you want to route requests to the right one. You could define the following rules:


	site1.com →︎ us_proxy


	site2.com/uk →︎ uk_proxy


	site2.com/ie →︎ ie_proxy




All URLs from site1.com should use the US proxy. The situation for site2.com URLs are
different: if the path starts with /uk, then the UK proxy should be used
whereas if the path starts with /ie then the IE proxy should be used instead.
This library allows to create a matcher that can be used to match URLs with the right proxy
using these rules.

Let see how the library can handle this situation:

from url_matcher import URLMatcher, Patterns

matcher = URLMatcher()
matcher.add_or_update("us_proxy", Patterns(["site1.com"]))
matcher.add_or_update("uk_proxy", Patterns(["site2.com/uk"]))
matcher.add_or_update("ie_proxy", Patterns(["site2.com/ie"]))

proxy = matcher.match("http://site1.com/articles/article1")
# proxy is "us_proxy" here

proxy = matcher.match("http://site2.com/uk/a_page")
# proxy is "uk_proxy" here

proxy = matcher.match("https://www.site2.com/ie/a_page")
# proxy is "ie_proxy" here

proxy = matcher.match("http://example.com/a_differnt_page")
# proxy is None here





As can be seen the the class url_matcher.URLMatcher is handy to handle
this use case.


Note

Relative URLs are not supported in the match method.




Patterns, include and exclude

A pattern is a URL that describes a set of URLs. For example, the
pattern example.com describes any URL whose domain is example.com
or any of its subdomains.

A single pattern is sometimes not enough to describe which URLs to match.
This is why we can define instead a set of patterns that are matched against.
There is then a list of positive patterns (include) and a list of
negative ones (exclude).

A URL is a match if it matches at least one of the patterns in include and
none of the patterns in exclude.

This is an example of a rule using such a set of patterns:

patterns = Patterns(include=["example.com", "example.org"],
                    exclude=["*.jpg|", "*.jpeg|"])
matcher.add_or_update("proxy_1", patterns))







Patterns

A pattern is a URL that describes a set of URLs. It itself is just a
URL. The following diagram summarizes its different parts and
what do they mean.

[image: Patterns Cheatsheet]

Note

Matching is always case-insensitive.



The best way to understand how the patterns work is to look at some examples:


Basic patterns







	Pattern

	Behaviour





	The empty string

	Universal pattern. Match any URL



	example.com

	Match any URL whose domain is example.com or any of its subdomains.







Match:


	http://example.com/anything?id=24


	https://www.example.com/page#with_fragment




Don’t match:


	http://myexample.com







	example.com/articles/

	Match any URL whose domain is example.com or www.example.com and path starts by /articles/.







Match:


	http://www.example.com/articles/article1


	https://example.com/articles/another_article?id=23




Don’t match:


	http://example.com/articles


	http://shop.example.com/articles/article1












Domain patterns







	Pattern

	Behaviour





	shop.example.com

	Match any URL whose domain is shop.example.com or any of its subdomains.







Match:


	https://shop.example.com/foo?id=34#fragment


	http://uk.shop.example.com/foo?id=34




Don’t match:


	http://myshop.example.com







	shop.example.com/

	Match any URL whose domain is shop.example.com or www.shop.example.com.







Match:


	https://shop.example.com/foo?id=34#fragment


	http://www.shop.example.com/foo?id=34




Don’t match:


	http://myshop.example.com


	http://uk.shop.example.com/foo?id=34











Note

Rules above only differ by the / character and this
is enough to change the matching behaviour. The
general rule is that the pattern matches the domain or any
of the subdomains only if the pattern does not contain a
path, a query or a fragment. Otherwise, only URLs with the exact
same domain after removing www. will match the pattern.





Path patterns

A URL matches if the pattern path is a prefix of it.

Besides, the following modifier characters can be used:



	The * character matches any number of characters.


	Use the | character at the end of the pattern path if
a exact path matching is required.













	Pattern

	Behaviour





	/articles/

	Match any URL whose path starts by /articles/.







Match:


	http://example.com/articles/an_article?id=23#main


	https://foo.com/articles/




Don’t match:


	https://foo.com/articles







	example.com/index.html|

	Match any URL whose domain is example.com or www.example.com and
path is exactly /index.html







Match:


	http://example.com/index.html?id=24


	https://www.example.com/index.html#main




Don’t match:


	http://shop.example.com/index.html


	http://shop.example.com/index.html_2







	/images/*.jpg|

	Match any URL whose path starts by /images/ and whose path ends by .jpg







Match:


	http://example.com/images/foo.jpg


	https://example.org/images/other/subpath/FOO.JPG?id=23




Don’t match:


	http://example.com/images/foo.jpeg


	http://example.com/images/foo.jpg_2












Query patterns

It serves to match URLs that have some specific parameters in the URL.
The order of parameters in the query string is irrelevant.
The wildcard char * can be used for values.

If a parameter is repeated in the pattern it will match if any
of the values provided is matched







	Pattern

	Behaviour





	/product|?id=34

	Match any URL whose path is /product and contains
the query parameter id with the value 34







Match:


	http://example.com/product?cat=shoes&id=34




Don’t match:


	http://example.com/product?id=12


	http://example.com/product/other?id=34







	/product|?id=*

	Match any URL whose path is /product and contains
the query parameter id with any value







Match:


	http://example.com/product?cat=shoes&id=34


	https://example.com/product?id=12&cat=clothes


	https://example.com/product?id=




Don’t match:


	http://example.com/product?cat=shoes


	http://example.com/product?cat=shoes&ids=34







	?cat=shoes&cat=pants

	Match any URL containing the query parameters cat with the values shoes or pants







Match:


	http://example.com/product?cat=shoes&id=34


	http://example.org/p?cat=pants




Don’t match:


	http://example.org/p?cat=pant












Fragment patterns

It works exactly like the path.




Rules conflict resolution

Sometimes several rules can match the same URL. We have then a conflict.
By default the library
will prioritize the most specific rule. For example, if
a URL is matching both a rule with a pattern example.com and another
with the pattern example.com/articles then the later one will
be final match because it is more specific.

Alternatively, it is possible to control manually the order of rules
by using the priority parameter of the url_matcher.Patterns.
In case of conflict, the rule with the highest priority will be chosen.

The full criteria applied to resolve a conflict between rules are:



	universality (rules with non universal include patterns are prioritized over rules with universal ones)


	priority (the highest wins)


	specificity (the most specific include patterns for the concerning domain wins)


	the rule id (the rule with the highest id wins)









Efficiency

Internally, the library clusters the rules by the top level domain
of their include patterns. This is done to speed up the matching because
it reduces the space of possible rules that can match a URL.

The drawback is that the rules with include patterns that do not
belong to any top level domain are not supported. In fact, an
error is raised.

An exception were done for the universal matching pattern. It is
the only cross-top-level-domain include pattern that is allowed.
The rationale is that is can be convenient to define defaults (e.g.
to define the default proxy to use if no other rule matches).





            

          

      

      

    

  

    
      
          
            
  
API Reference


Module url_matcher


	
class Patterns(include: List[str [https://docs.python.org/3/library/stdtypes.html#str]], exclude: List[str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, priority: int [https://docs.python.org/3/library/functions.html#int] = 500)

	
	
__init__(include: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], exclude: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, priority: int [https://docs.python.org/3/library/functions.html#int] = 500)

	




	
all_includes_have_domain() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if all the include patterns have a domain






	
exclude: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...]

	




	
get_domains() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	




	
get_includes_for(domain: str [https://docs.python.org/3/library/stdtypes.html#str]) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	




	
get_includes_without_domain() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	




	
include: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...]

	




	
is_universal_pattern() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if there are no include patterns or they are empty. A universal pattern matches any domain






	
priority: int [https://docs.python.org/3/library/functions.html#int]

	








	
class URLMatcher(data: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][Any [https://docs.python.org/3/library/typing.html#typing.Any], Patterns] | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], Patterns]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	
	
__init__(data: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][Any [https://docs.python.org/3/library/typing.html#typing.Any], Patterns] | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], Patterns]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	A class that matches URLs against a list of patterns, returning
the identifier of the rule that matched the URL.

Example usage:

matcher = URLMatcher()
matcher.add_or_update(1, Patterns(include=["example.com/product"]))
matcher.add_or_update(2, Patterns(include=["other.com"]))

assert matcher.match("http://example.com/product/a_product.html") == 1
assert matcher.match("http://other.com/a_different_page") == 2






	Parameters:

	data – A map or a list of tuples with identifier, patterns pairs to
initialize the object from










	
add_or_update(identifier: Any [https://docs.python.org/3/library/typing.html#typing.Any], patterns: Patterns)

	




	
get(identifier: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Patterns | None [https://docs.python.org/3/library/constants.html#None]

	




	
match(url: str [https://docs.python.org/3/library/stdtypes.html#str], *, include_universal=True) → Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None]

	




	
match_all(url: str [https://docs.python.org/3/library/stdtypes.html#str], *, include_universal=True) → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	




	
match_universal() → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	




	
remove(identifier: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	











            

          

      

      

    

  

    
      
          
            
  
Contributing

url-matcher is an open-source project. Your contribution is very welcome!


Issue Tracker

If you have a bug report, a new feature proposal or simply would like to make
a question, please check our issue tracker on Github: https://github.com/zytedata/url-matcher/issues



Source code

Our source code is hosted on Github: https://github.com/zytedata/url-matcher

Before opening a pull request, it might be worth checking current and previous
issues. Some code changes might also require some discussion before being
accepted so it might be worth opening a new issue before implementing huge or
breaking changes.



Testing

We use tox [https://tox.readthedocs.io] to run tests with different Python versions:

tox





The command above also runs type checks; we use mypy.








            

          

      

      

    

  

    
      
          
            
  
Changelog


0.5.0 (2024-04-15)


	Added the include_universal argument to URLMatcher.match() and
URLMatcher.match_all(). It can be set to False to skip universal
matchers.


	Added the URLMatcher.match_universal() method that returns only
identifiers of universal matchers.


	Added .readthedocs.yml.






0.4.0 (2024-04-03)


	Added official support for Python 3.12.


	Added the URLMatcher.match_all() method that returns all matching
identifiers.


	Adding a Patterns instance with several patterns for the same
domain to a URLMatcher no longer creates multiple identical
PatternsMatcher instances.


	CI improvements.






0.3.0 (2023-09-21)


	Drop Python 3.7 support, make Python 3.11 support official.


	Support tldextract >= 3.6, make the requirement of tldextract >= 1.2
explicit.






0.2.0 (2022-02-01)


	Update Patterns to be frozen so instances can easily be
deduped based on its hash uniqueness.


	Remove Python 3.6 support






0.1.0 (2021-11-19)


	Initial release











            

          

      

      

    

  

    
      
          
            
  
License

Copyright (c) Zyte Group Ltd
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:



	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.


	Neither the name of Zyte nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.







THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.




            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   u
   


   
     		 	

     		
       u	

     
       	
       	
       url_matcher	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | E
 | G
 | I
 | M
 | P
 | R
 | U
 


_


  	
      	__init__() (Patterns method)

      
        	(URLMatcher method)


      


  





A


  	
      	add_or_update() (URLMatcher method)


  

  	
      	all_includes_have_domain() (Patterns method)


  





E


  	
      	exclude (Patterns attribute)


  





G


  	
      	get() (URLMatcher method)


      	get_domains() (Patterns method)


  

  	
      	get_includes_for() (Patterns method)


      	get_includes_without_domain() (Patterns method)


  





I


  	
      	include (Patterns attribute)


  

  	
      	is_universal_pattern() (Patterns method)


  





M


  	
      	match() (URLMatcher method)


      	match_all() (URLMatcher method)


  

  	
      	match_universal() (URLMatcher method)


      	
    module

      
        	url_matcher


      


  





P


  	
      	Patterns (class in url_matcher)


  

  	
      	priority (Patterns attribute)


  





R


  	
      	remove() (URLMatcher method)


  





U


  	
      	
    url_matcher

      
        	module


      


  

  	
      	URLMatcher (class in url_matcher)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          url-matcher documentation
        


        		
          Introduction
          
            		
              Patterns, include and exclude
            


            		
              Patterns
              
                		
                  Basic patterns
                


                		
                  Domain patterns
                


                		
                  Path patterns
                


                		
                  Query patterns
                


                		
                  Fragment patterns
                


              


            


            		
              Rules conflict resolution
            


            		
              Efficiency
            


          


        


        		
          API Reference
          
            		
              Module url_matcher
              
                		
                  Patterns
                


                		
                  URLMatcher
                


              


            


          


        


        		
          Contributing
          
            		
              Issue Tracker
            


            		
              Source code
            


            		
              Testing
            


          


        


        		
          Changelog
          
            		
              0.5.0 (2024-04-15)
            


            		
              0.4.0 (2024-04-03)
            


            		
              0.3.0 (2023-09-21)
            


            		
              0.2.0 (2022-02-01)
            


            		
              0.1.0 (2021-11-19)
            


          


        


        		
          License
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





_images/patterns-cheatsheet.png
order doesn't matter

] exact matching
prefix matching
wildcard char * allowed for values

matches:
wildcard char * allowed

@ domain and its subdomains if no
path, query and fragment

end of path char |
I same as path

v“‘ ‘® domain and the www.

: ;| subdomain otherwise ;
http://example.com/path/to/resource ?param=value#fragment
& - JU - U - JU - JL - J

Domain Path Query Fragment

Schema





